HD (Hard Disk)

 

 

Disco rígido ou disco duro, no Brasil popularmente chamado também de HD (derivação de HDD do inglês hard disk drive) ou winchester (em desuso), "memória de massa" ou ainda de "memória secundária" é a parte do computador onde são armazenados os dados. O disco rigido é uma memoria não-volátil, ou seja, as informações não são perdidas quando o computador é desligado, sendo considerada a "memória" propriamente dita (não confundir com "memória RAM"). Por ser uma memória não-volátil, é um sistema necessário para se ter um meio de executar novamente programas e carregar arquivos contendo os dados inseridos anteriormente quando ligamos o computador. Nos sistemas operativos mais recentes, ele é também utilizado para expandir a memória RAM, através da gestão de memória virtual. Existem vários tipos de discos rígidos diferentes: IDE/ATA, Serial ATA, SCSI, Fibre channel, SAS, SSD.

História do disco rígido

Um antigo disco rígido IBM

O primeiro disco rígido foi construído pela IBM em 1996, e foi lançado em 14 de Setembro de 1957.[1] Era formado por 50 discos magnéticos contendo 50 000 setores, sendo que cada um suportava 100 caracteres alfanuméricos, totalizando uma capacidade de 5 megabytes, incrível para a época. Este primeiro disco rígido foi chamado de 305 RAMAC (Random Access Method of Accounting and Control) e tinha dimensões de 152,4 centímetros de comprimento, 172,72 centimetros de largura e 73,66 centímetros de altura.[1] Em 1973 a IBM lançou o modelo 3340 Winchester, com dois pratos de 30 megabytes e tempo de acesso de 30 milissegundos. Assim criou-se o termo 30/30 Winchester (uma referência à espingarda Winchester 30/30), termo muito usado antigamente para designar HDs de qualquer espécie. Ainda no início da década de 1980, os discos rígidos eram muito caros e modelos de 10 megabytes custavam quase 2 mildólares americanos, enquanto em 2009 compramos modelos de 1.5 terabyte por pouco mais de 100 dólares. Ainda no começo dos anos 80, a mesma IBM fez uso de uma versão pack de discos de 80 megabytes, usado nos sistemas IBM Virtual Machine. Os discos rigidos foram criados originalmente para serem usados em computadores em geral. Mas no século 21 as aplicações para esse tipo de disco foram expandidas e agora são usados em câmeras filmadoras, ou camcorders nos Estados Unidos; tocadores de música como Ipod, mp3 player; PDAs; videogames, e até em celulares. Para exemplos em videogames temos o Xbox360 e o Playstation 3, lançados em 2005 e 2006 respectivamente, com esse diferencial, embora a Microsoft já tivesse lançado seu primeiro Xbox (em 2001) com disco rígido convencional embutido. Já para celular os primeiros a terem esse tecnologia foram os da Nokia e da Samsung.[2] E também devemos lembrar que atualmente o disco rigido não é só interno, existem também os externos, que possibilitam o transporte de grandes quantidades de dados entre computadores sem a necessidade de rede.

Como os dados são gravados e lidos

Os discos magnéticos de um disco rígido são recobertos por uma camada magnética extremamente fina. Na verdade, quanto mais fina for a camada de gravação, maior será sua sensibilidade, e conseqüentemente maior será a densidade de gravação permitida por ela. Poderemos, então, armazenar mais dados num disco do mesmo tamanho, criando HDs de maior capacidade. Os primeiros discos rígidos, assim como os discos usados no início da década de 80, utilizavam a mesma tecnologia de mídia magnética utilizada em disquetes, chamada coated media, que além de permitir uma baixa densidade de gravação, não é muito durável. Os discos atuais já utilizam mídia laminada (plated media), uma mídia mais densa, de qualidade muito superior, que permite a enorme capacidade de armazenamento dos discos modernos. A cabeça de leitura e gravação de um disco rígido funciona como um eletroímã semelhante aos que estudamos nas aulas de ciências e física do colegial, sendo composta de uma bobina de fios que envolve um núcleo de ferro. A diferença é que, num disco rígido, este eletroímã é extremamente pequeno e preciso, a ponto de ser capaz de gravar trilhas medindo menos de um centésimo de milímetro de largura. Quando estão sendo gravados dados no disco, a cabeça utiliza seu campo magnético para organizar as moléculas de óxido de ferro da superfície de gravação, fazendo com que os pólos positivos das moléculas fiquem alinhados com o pólo negativo da cabeça e, conseqüentemente, com que os pólos negativos das moléculas fiquem alinhados com o pólo positivo da cabeça. Usamos, neste caso, a velha lei "os opostos se atraem". Como a cabeça de leitura e gravação do HD é um eletroímã, sua polaridade pode ser alternada constantemente. Com o disco girando continuamente, variando a polaridade da cabeça de gravação, variamos também a direção dos pólos positivos e negativos das moléculas da superfície magnética. De acordo com a direção dos pólos, temos um bit 1 ou 0 (sistema binário).

Para gravar as sequências de bits 1 e 0 que formam os dados, a polaridade da cabeça magnética é mudada alguns milhões de vezes por segundo, sempre seguindo ciclos bem determinados. Cada bit é formado no disco por uma seqüência de várias moléculas. Quanto maior for a densidade do disco, menos moléculas serão usadas para armazenar cada bit, e teremos um sinal magnético mais fraco. Precisamos, então, de uma cabeça magnética mais precisa. Quando é preciso ler os dados gravados, a cabeça de leitura capta o campo magnético gerado pelas moléculas alinhadas. A variação entre os sinais magnéticos positivos e negativos gera uma pequena corrente elétrica que caminha através dos fios da bobina. Quando o sinal chega à placa lógica do HD, ele é interpretado como uma seqüência de bits 1 e 0. Desse jeito, o processo de armazenamento de dados em discos magnéticos parece ser simples, e realmente era nos primeiros discos rígidos (como o 305 RAMAC da IBM), que eram construídos de maneira praticamente artesanal. Apesar de nos discos modernos terem sido incorporados vários aperfeiçoamentos, o processo básico continua sendo o mesmo.

Formatação do disco

Exemplos de sistema de arquivos

Os sistemas de arquivos mais conhecidos são os utilizados pelo Microsoft Windows: NTFS e FAT32 (e FAT ou FAT16). O FAT32, às vezes referenciado apenas como FAT (erradamente, FAT é usado para FAT16), é uma evolução do ainda mais antigo FAT16 introduzida a partir do MS-DOS 4.0. No Window 95 ORS/2 foi introduzido o FAT32 (uma versão “debugada” do Windows 95, com algumas melhorias, vendida pela Microsoft apenas em conjunto com computadores novos). A partir do Windows NT, foi introduzido um novo sistema de arquivos, o NTFS, que é mais avançado do que o FAT (em nível de segurança, sacrificando algum desempenho), sendo o recurso de permissões de arquivo (sistemas multi-usuário), a mais notável diferença, inexistente nos sistemas FAT e essencial no ambiente empresarial (e ainda a inclusão do metadata), além dos recursos de criptografia e compactação de arquivos.

Em resumo, versões antigas, mono-usuário, como Windows 95, 98 e ME, trabalham com FAT32 (mais antigamente, FAT16). Já versões novas, multi-usuário, como Windows XP e Windows 2000, trabalham primordialmente com o NTFS, embora o sistema FAT seja suportado e você possa criar uma partição FAT nessas versões. No mundo Linux, há uma grande variedade de sistemas de arquivos, sendo alguns dos mais comuns o Ext2, Ext3 e o ReiserFS. O FAT e o NTFS também são suportados tanto para leitura quanto para escrita. No Mundo BSD, o sistema de arquivos é denominado FFS (Fast File System), derivado do antigo UFS (Unix File System). Em 2009, encontramos um novo tipo de sistema de arquivo chamado NFS (Network File System), o qual possibilita que HDs Virtuais sejam utilizadas remotamente, ou seja, um servidor disponibiliza espaço através de suas HDs físicas para que outras pessoas utilizem-nas remotamente como se ela estivesse disponível localmente. Um grande exemplo desse sistema encontramos no Google ou no 4shared, com espaços disponíveis de até 5 GB.

Setor de boot

Quando o computador é ligado, o POST (Power-on Self Test), um pequeno programa gravado em um chip de memória ROM na placa-mãe, que tem a função de “dar a partida”, tentará inicializar o sistema operacional. Independentemente de qual sistema de arquivos se esteja usando, o primeiro setor do disco rígido será reservado para armazenar informações sobre a localização do sistema operacional, que permitem ao BIOS "achá-lo" e iniciar seu carregamento.

No setor de boot é registrado onde o sistema operacional está instalado, com qual sistema de arquivos o disco foi formatado e quais arquivos devem ser lidos para inicializar o computador. Um setor é a menor divisão física do disco, e possui na grande maioria das vezes 512 Bytes (nos CD-ROMs e derivados é de 2048 Bytes). Um cluster, também chamado de agrupamento, é a menor parte reconhecida pelo sistema operacional, e pode ser formado por vários setores. Um arquivo com um número de bytes maior que o tamanho do cluster, ao ser gravado no disco, é distribuído em vários clusters. Porém, um cluster não pode pertencer a mais de um arquivo. Um único setor de 512 Bytes pode parecer pouco, mas é suficiente para armazenar o registro de boot devido ao seu pequeno tamanho. O setor de boot também é conhecido como "trilha MBR", "trilha 0' etc. Como dito, no disco rígido existe um setor chamado Trilha 0, e nele está gravado o (MBR) (Master Boot Record), que significa "Registro de Inicialização Mestre", um estilo de formatação, onde são encontradas informações sobre como está dividido o disco (no sentido lógico)e sobre a ID de cada tabela de partição do disco, que dará o boot. O MBR é lido pelo BIOS, que interpreta a informação e em seguida ocorre o chamado "bootstrap", "levantar-se pelo cadarço", lê as informações de como funciona o sistema de arquivos e efetua o carregamento do sistema operacional. O MBR e a ID da tabela de partição ocupam apenas um setor de uma trilha, o restante dos setores desta trilha não são ocupados, permanecendo vazios, servindo como área de proteção do MBR. É nesta mesma área que alguns vírus (Vírus de Boot) se alojam.

Disquetes, Zip-disks e CD-ROMs não possuem MBR; no entanto, possuem tabela de partição, no caso do CD-ROMs e seu descendentes (DVD-ROM, HDDVD-ROM, BD-ROM...) possuem tabela própria, podendo ser CDFS (Compact Disc File System) ou UDF (Universal Disc Format) ou, para maior compatibilidade, os dois; já os cartões de memória Flash e Pen-Drives possuem tabela de partição e podem ter até mesmo MBR, dependendo de como formatados. O MBR situa-se no primeiro setor da primeira trilha do primeiro prato do HD (setor um, trilha zero, face zero, prato zero). O MBR é constituído pelo bootstrap e pela tabela de partição. O bootstrap é o responsável por analisar a tabela de partição em busca da partição ativa. Em seguida, ele carrega na memória o Setor de Boot da partição. Esta é a função do bootstrap.

A tabela de partição contém informações sobre as partições existentes no disco. São informações como o tamanho da partição, em qual trilha/setor/cilindro ela começa e termina, qual o sistema de arquivos da partição, se é a partição ativa; ao todo, são dez campos. Quatro campos para cada partição possível (por isso, só se pode ter 4 partições primárias, e é por isso também que foi-se criada a partição estendida...), e dez campos para identificar cada partição existente. Quando acaba o POST, a instrução INT 19 do BIOS lê o MBR e o carrega na memória, e é executado o bootstrap. O bootstrap vasculha a tabela de partição em busca da partição ativa, e em seguida carrega na memória o Setor de Boot dela. A função do Setor de Boot é a de carregar na memória os arquivos de inicialização do sistema operacional. O Setor de Boot fica situado no primeiro setor da partição ativa.

Capacidade do disco rígido

A capacidade de um disco rígido atualmente disponível no mercado para uso doméstico/comercial varia de 10 a 2000 GB, assim como aqueles disponíveis para empresas, de até 2 TB. O HD evoluiu muito. O mais antigo possuía 5 MB (aproximadamente 4 disquetes de 3 1/2 HD), sendo aumentada para 30 MB, em seguida para 500 MB (20 anos atrás), e 10 anos mais tarde, HDs de 1 a 3 GB. Em seguida lançou-se um HD de 10 GB e posteriormente um de 15 GB. Posteriormente, foi lançado no mercado um de 20 GB, até os atuais HDs de 60GB a 1TB. As empresas usam maiores ainda: variam de 40 GB até 2 TB, mas a Seagate informou que em 2010 irá lançar um HD de 200 TB (sendo 50 TB por polegada quadrada, contra 70 GB dos atuais HDs)[carece de fontes?].

No entanto, as indústrias consideram 1 GB = 1000 * 1000 * 1000 bytes, pois no Sistema Internacional de Unidades(SI), que trabalha com potências de dez, o prefixo giga quer dizer * 10003 ou * 109 (bilhões), enquanto os sistemas operacionais consideram 1 GB = 1024 * 1024 * 1024 bytes, já que os computadores trabalham com potências de dois e 1024 é a potência de dois mais próxima de mil. Isto causa uma certa disparidade entre o tamanho informado na compra do HD e o tamanho considerado pelo Sistema Operacional, conforme mostrado na tabela abaixo. Além disso, outro fator que pode deixar a capacidade do disco menor do que o anunciado é a formatação de baixo nível (formatação física) com que o disco sai de fábrica.

Informado na Compra Considerado pelo Sistema
10 GB 9,31 GB
15 GB 13,97 GB
20 GB 18,63 GB
30 GB 27,94 GB
40 GB 37,25 GB
80 GB 74,53 GB
120 GB 111,76 GB
160 GB 149,01 GB
200 GB 186,26 GB
250 GB 232,83 GB
300 GB 279,40 GB
500 GB 465,66 GB
750 GB 698,49 GB
1 TB 931,32 GB
1.5 TB 1.396,98 GB
2 TB 1.862,64 GB
2.5 TB (2010)[3] 2.328,30 GB

Todos os valores acimas são aproximações

Toda a vez que um HD é formatado, uma pequena quantidade de espaço é marcada como utilizada.

HD